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Abstract:

This paper investigates mass and thermal transfer in a system of infinite vertically parallel plates
under the influence of a chemical reaction(first order). This setup involves a Casson fluid and
immiscible fluids. Using perturbation techniques, we solve the nonlinear coupled mathematical
model, applying appropriate restrictions. The incompressible fluids, is assumed, fluid have
different viscosities and thermal conductivities, and their transport properties are considered
constant. We match the separate solutions using appropriate matching conditions. The study
analysis explores how various parameters affect heat and mass transfer, presenting the results
graphically. We find that both the thermal & the mass Grashof numbers increase the flow.
regardless of the presence of a first-order chemical reaction. While viscous dissipation, viscosity,
width and conductivity ratio promote the flow, the first-order chemical reaction parameter tends
to suppress it in both regions.

1. Introduction:

Convective flows play a crucial role in various industrial advantages, some of them are
fiber and granular insulation and geothermal systems. Casson fluid, a type of non-Newtonian
fluid with yield stress, is particularly significant. For instance, human blood act like a Casson
fluid due to the presence of blood cells and substances like protein and fibrinogen. This
characteristic makes the study of Casson fluid relevant in both scientific and engineering fields.

Analyses of convective flows often include scenarios like free and mixed convection and



examine conditions with either symmetric or asymmetric heating. Typically, numerical
techniques are used to analyze developing flows, as noted in reference [1], while fully developed

flows are often examined analytically [2], and experimental data are also available [3].

The impact of viscous dissipation on the natural and forced convection in porous media
has been explored by Ingham et al. [4]. More recent research, such as by Nield [5] and Magyari
et al. [6], delves into the effects of viscous dissipation & buoyancy. Barletta et al. [7] provided
Taylor series solutions analytical for mixed convection under isoflux-isothermal wall conditions.

These studies generally focus on single-fluid models.

In contrast, many challenges in fields like petroleum engineering, geophysics, plasma
physics, and magneto-fluid dynamics involve the flow of multiple fluids. Understanding
importantance of immiscible fluid in drug engineering and medicine [8]. Various studies were
explored the hydrodynamic aspects of 2-fluid flow. For example, Bird et al. [9] derived an exact
solution. Bhattacharya [10] examined the flow of two immiscible fluids between rigid parallel
plates. Examples underscore the necessity of understanding the dynamics of multiphase

immiscible flows for accurate process modelling.

Modelling multi-fluid systems introduces complexities, especially concerning the
transport phenomena. There has been both theoretical and practical research in horizontal pipes
[11, 12]. Kumar et al. [13, 14] investigated convective immiscible fluids in channels. Barletta et
al. [15] applied similar approaches to mixed convection channel flow of clear fluids under

symmetric isothermal-isothermal wall conditions.

The study of two-fluid and thermal transfer is critical in the chemical and nuclear
industries. These processes are particularly important for designing heat transport systems in
space applications, where understanding thermal and diffusion transfer under reduced gravity is
essential. Key aspects for designing two-fluid systems include identifying fluid flow regions,
calculating pressure drops, assessing void fractions and quality reactions, and determining heat
transfer coefficients for both fluids.



Malashetty and Leela [16] were investigated the Hartmann flow behaviour of two fluids.
Further, the dynamics of two-phase flow & thermal transfer had examined by Malashetty and

Umavati [17] and in other studies by Malashetty and colleagues [18, 19].

In this paper, we present analytical results concerning the fully-developed convective flow of a

micropolar flow within a porous medium.

2. Mathematical Formulation

The first (—h, <Y <0) passage is occupied by Cassono fluid and the second passage
(0<Y <h,) is occupied by viscous fluid having different density, viscosity, thermal

conductivity, thermal and concentration expansion ratios. Except the density all fluid properties

are maintained constant.
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Boundary conditions on the flows are
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Modified nondimensional system of equations are
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The non-dimensional form of wall restrictions,
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3. Method of solutions
Non-linear and coupled equations are solved by regular perturbation technique and closed form

solutions cannot be obtained. However, by assuming Brinkman number as small perturbation, we

get the approximate analytical solutions.

“U (y) =Ug (y)+euy (y)+&u, (y)+...” (16)

“0,(Y) =00 (y)+ 0, () + %0, (y)+..." (17)

Equating the co-efficient of like powers of Br to zero and one we get equations as shown below
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Boundary conditions are:
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The solutions for concentrations are directly obtained



¢ = ACosh(a,y)+ A,Sinh(a,y) (28)
¢, = A,Cosh(a,y)+ A,Sinh(a,Y) (29)
Flow solutions are displayed as below
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4. Results and discussion

The differential equations (9)-(14) describing the flow of an incompressible Casson fluid
between two vertical plates have been analytically solved under the given restrictions (15). The
solutions, expressed in closed form (18) to (25), are illustrated graphically. The velocity and

microrotation components are plotted for various parameters.



Figures 2a and 2b depict the influence of the mixed convection parameter (GR; ) on velocity and
temperature. Enhances in (GR; ) enhances the buoyancy force, thus aiding fluid motion,
especially noticeable in the micropolar flow compared to the porous region, as shown in Figure
2b. However, as (GR; ) increases, the microrotation velocity diminishes. If the micropolar fluid
is substituted with a viscous fluid, the impact of the thermal Grashof number persists, though the

enhancement is more pronounced in viscous incompressible fluids than in micropolar fluids.
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Fig. 2a. Tempreture profile for different values of width ratio h.
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Conclusions:

The following conclusions are drawn

Higher thermal and mass Grashof numbers lead to an increase in both velocity and
temperature within the system.
An enhancement in the viscosity, width, and conductivity ratio results in a corresponding
enlargement of the flow field.
The flow field diminishes when a first-order chemical reaction is present, compared to
when it is absent. Additionally, as the rate of the chemical reaction increases, both

thermal and concentration transfer tend to diminished.



e An increase in modified Grashof number, viscosity , width, and conductivity ratio
contributes to higher volumetric flow rates, species concentrations, and heat addition to
the flow.

e The discrepancy between analytical and numerical solutions grows as the Brinkman

number increases.
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