by
.
.
.


.
by . U.V.S. Seshavatharam
Honorary faculty, ISERVE, Alakapuri,
Hyderabad35, AP, India
Email: seshavatharam.uvs@gmail.com
. S. Lakshminarayana
Dept. of Nuclear Physics, Andhra University,
Visakhapatnam03, AP, India
Email: lnsrirama@yahoo.com
. .
Introduction
In this paper by highlighting the following 28 major short comings of modern big bang cosmology the authors made an attempt to develop a possible model of Black hole cosmology in a constructive way [13].
From now onwards instead of focusing on ‘big bang cosmology’ it is better to concentrate on ‘black hole cosmology’.
Its validity can be well confirmed from a combined study of cosmological and microscopic physical phenomena.
It can be suggested that, there exists one variable physical quantity in the presently believed atomic and nuclear physical constants and “rate of change” in its magnitude can be considered as a “standard measure” of the present “cosmic rate of expansion”.
Michael E. McCulloch says [4]: For an observer in an expanding universe there is a maximum volume that can be observed, since beyond the Hubble distance the velocity of recession is greater than the speed of light and the redshift is infinite: this is the Hubble volume.
Its boundary is similar to the event horizon of a black hole because it marks a boundary to what can be observed.
This means that it is reasonable to assume that Hawking radiation is emitted at this boundary both outwards and inwards to conserve energy, and any wavelength that does not fit exactly within this size cannot be allowed for the inwards radiation, and therefore also for the outwards radiation.
According to Hawking, the mass of a black hole is linearly related to its temperature or inverselylinearly related to the wavelength of the Hawking radiation it emits.
Therefore, for a given size of the universe there is a maximum Hawking wavelength it can have and a minimum allowed gravitational mass it can have.
If its mass was less than this then the Hawking radiation would have a wavelength that is bigger than the size of the observed universe and would be disallowed.
The minimum mass it predicts is encouragingly close to the observed mass of the Hubble volume.
Thus it is possible to model the Hubble volume as a black hole that emits Hawking radiation inwards, disallowing wavelengths that do not fit exactly into the Hubble diameter, since partial waves would allow an inference of what lies outside the horizon.
According to Tinaxi Zhang [57], the universe originated from a hot starlike black hole with several solar masses and gradually grew up through a super massive black hole with billion solar masses to the present state with hundred billiontrillion solar masses by accreting ambient materials and merging with other black holes.
According to N. J. Poplawski [811], the Universe is the interior of an EinsteinRosen black hole and began with the formation of the black hole from a supernova explosion in the center of a galaxy.
He theorizes that torsion manifests itself as a repulsive force which causes fermions to be spatially extended and prevents the formation of a gravitational singularity within the black hole’s event horizon.
Because of torsion, the collapsing matter on the other side of the horizon reaches an enormous but finite density, explodes and rebounds, forming an EinsteinRosen bridge (wormhole) to a new, closed, expanding universe.
Analogously, the Big Bang is replaced by the Big Bounce before which the Universe was the interior of a black hole.
The rotation of a black hole would influence the spacetime on the other side of its event horizon and results in a preferred direction in the new universe.
Most recently cosmologists Razieh Pourhasan, Niayesh Afshordi and Robert B. Manna have proposed [12] that the Universe formed from the debris ejected when a fourdimensional star collapsed into a black hole – a scenario that would help to explain why the cosmos seems to be so uniform in all directions.
. by
Wladimir Guglinski
retired, author of the Quantum Ring Theory
.
In the book Quantum Ring Theory I had proposed a doublefield model for elementary particles (composed by two concentric fields), therefore a field model fundamentally different of the monofield model considered in the Quantum Electrodynamics (QED).
The inner field, named principal field Sp, gyrates and induces the outer field, named secondary field Sn. In the book, published in 2006, it was considered that the outer field Sn gyrates.
In this model, the outer field Sn is responsible for the electric charge of the particles as the electron, the proton, etc.
Later in 2010 I changed the doublefield model, by considering that the outer field Sn does not gyrates. However, in 2014, after a long discussion with the reader Mr.Joe in the Comments of the Journal of Nuclear Physics, he drew our attention to two key points:
Here we will analyse these questions in details.
.
.
.
by Sundar Narayan
Lambton College – Sarnia, Ontario, Canada
Abstract
This paper derives a formula for the lifetime of an unbound or free neutron and shows that neutron lifetime can be related to Newton’s gravitational constant, G, providing a muchneeded theoretical formula for G, enabling G to be computed with greater accuracy than today’s experiments allow.
Another equally accurate formula for G is derived based on the properties of the virtual electrons that very briefly exist in a quantum vacuum.
Also, Newton’s law of gravity and Coulomb’s electrostatic law are derived from the same equation, providing a simple proof of the wellknown connection between these two laws.
. by Read the whole article . Abstract
The hspace theory is a variant of unified physical theory – a theory of everything.
This theory was built de novo, as the existing physical theories are incompatible and so unsuitable for unification.
A new approach is needed, and has been developed by reevaluating the definitions of primary physical concepts.
The starting point for the reevaluation was the following equation – Et = mvL, where energy – E, time – t, length – L, mass – m, velocity – v.
Analysis of these physical concepts resulted in the construction of a unique equation of the primary concepts such as space, length, energy and velocity.
From this, models could be developed that explain all wellknown physical phenomena.
In addition, hspace theory predicts phenomena rejected by the current mainstream theories, such as limits to gravitational and electrostatic interactions, and the possibility of cold fusion (as a consequence of the electric charge definition, a modification of Coulomb’s law and the definitions of elementary particles in hspace theory).
The final section of this article describes a number of experimental tests that could be used to verify the hspace theory.
. Read the whole article . . . The current theoretical understanding does not offer an explanation for cold fusion or LENR. The treatise “Basic Structures of Matter – Supergravitation Unified Theory”, based on an alternative concept of the physical vacuum, provides an explanation from a new point of view by using derived threedimensional structures of the atomic nuclei. For explanation of the nuclear energy, a hypothesis of a field microcurvature around the superdense nucleus is suggested.
Analysis of some successful cold fusion experiments resulted in practical considerations for modification of the Coulomb barrier.
The analysis also predicts the possibility of another cold fusion reaction based on similarities between the nuclear structures of Ni and Cr.
.
by
Gamal A. Nasser
Faculty of science, Mansoura University, Egypt
Email: chem.gamal@hotmail.com
.
.
Abstract
This model is development of solid nuclear models. Like FCC model, this model can account for nuclear properties that have been explained by different models. This model gives more accurate explanation for some nuclear properties which are Asymmetric fission, Nuclear binding energy and the most bound nuclei, Natural radioactivity and Number of neutrons in nuclei depending on the structures of these nuclei. The structures of nuclei in this model have special advantage, as there is separation between lattice positions of similar nucleons giving new concept for nuclear force.
.
.
.
by
.
U.V.S.Seshavatharam
Honorary faculty, ISERVE, Alakapuri
Hyderabad35, AP, India
Email: seshavatharam.uvs@gmail.com
.
S.Lakshminarayana
Dept.of Nuclear Physics, Andhra University
Visakhapatnam03, AP, India
Email: lnsrirama@yahoo.com
.
.
Abstract
Point of ‘big bang’ can be considered as the center or characteristic reference point of cosmic expansion in all directions.
If so, the existence of ‘preferred direction’ in the universe may not be wrong.
Based on the Mach’s principle, it can be suggested that, within the ‘Hubble volume’ overall distribution of ‘Hubble mass’ will explain the
observed physical phenomena.
With the discovered applications it is very clear to say that, without a joint and unified study of cosmology and atomic & particle physics, one should not deny the concepts of black hole cosmology.
The most interesting thing is that, at any given cosmic time, if the universe is a primordial growing black hole, then certainly its ‘Schwarzschild radius’ can be considered as its characteristic minimum size at that time.
Clearly speaking, “forever rotating at light speed, high temperature and high angular velocity small sized primordial cosmic black hole gradually transforms into a low temperature and low angular velocity large sized massive primordial cosmic black hole”.
Independent of the redshift observations and considering the proposed relations, with a great confidence now one can start seeing/observing the universe as a primordial expanding and light speed rotating black hole. Based on the proposed relations and concepts of black hole cosmology, definitions of cosmic homogeneity and cosmic isotropy must be readdressed.
It is also clear that, now the black hole universe is expanding in a decelerating mode at a very small rate in such a way that with current technology one cannot measure its deceleration rate.
Finally it can be suggested that cosmic acceleration and dark energy can be considered as pure mathematical concepts and there exists no physical base behind their affirmation.
For the most serious cosmologists this may be a bitter news, but it is a fact.
Authors hope that, by 2015 definitely this subject will come into main stream physics.
With reference to Black hole cosmology, it can be suggested that, characteristic nuclear charge radius and the characteristic angular momentum of the revolving electron increase with cosmic time.
In addition, characteristic nuclear charge radius is more fundamental than the reduced Planck’s constant.
The key point to be noted is that the Planck’s constant can be considered as a cosmological constant.
.
.
.
by Jacques Chauveheid
If quantum mechanics can provide quantitative expressions of forces in conformity with the work of Erhenfest and the principle of correspondence, recognized quantitative expressions for nuclear and weak forces do not currently exist. In addition, the four basic forces do not depend on temperature, since measured in vacuum between particles.
In one of his books, Abraham Pais recalled a comment by Rutherford during the 19141919 period: “the Coulomb forces dominate if v (speed of alpha particles) is sufficiently small”, evidencing by these words the velocitydependence of the strongnuclear force. However, since Rutherford did not apparently refer to temperature, optimal conditions for nuclear fusion do not necessarily arise in disordered configurations characterized by extremely high temperatures, such as those encountered in stars like the sun. Even compared with galaxy formation, hot fusion in many stars seems the slowest and most inefficient physical phenomenon in the universe, because the sun’s ten billion year lifetime has an order of magnitude similar to the age of the universe, this circumstance having been highly beneficial for the life on earth.
Although not based on equations, Rutherford’s conclusion constitutes the essence of the “cold” approach to nuclear fusion and reactions starting from moderate energy levels, instead of extreme temperatures hardly controlling with precision the physical parameters ruling nuclear phenomena. In this view, a better theoretical understanding of these parameters will help nuclear technologies.
. B. Theoretical antecedents
Eddington mentioned the concept of asymmetric affine connection in 1921 and pointed out applications in microphysics, but he did not pursue this idea [5]. In 1922, Elie Cartan introduced geometric torsion, as the antisymmetric part of an asymmetric affine connection. In May 1929, Cartan wrote a letter to Einstein in which he recommended the use of the differential formalism he developed, but Einstein did not follow Cartan’s advice.
Between 1944 and 1950, J. Mariani published four papers dealing with astrophysical magnetism and introduced an “ansatz” structurally similar to that used in the present theory. The German word “ansatz”, used by Ernst Schmutzer (correspondence), refers to a supposed relationship between fields of distinct origin, for example geometric contrasting with physical. Einstein also used an ansatz when he identified gravitation with the 4space metric, but he did not put it in the form of an equation, presumably because being trivial.
The organization of the paper is the following: Section II details the Lagrangian formulation and the calculus of variations. Section III is about field equations and quantitative expressions of forces. Section IV introduces the shortrange force between charged particles, first referred to as strongnuclear between nucleons. Section V is on Yukawa and complexity. Section VI details the shortrange forces in both systems electronproton and electronneutron, evidencing a weak nuclear mechanism in LENR technologies.
When not stated otherwise, mathematical conventions are those of reference. . . Read the whole article . Abstract
In recent years there has been a dramatic progress in the understanding of the nonperturbative structure of various physical theories.
In particular string theory has been vastly developed during these years, where a lot of duality conjectures between the different string theories have arisen.
The introductory text of this thesis is an attempt to describe this development in short and to make a brief overview of the subject.
Special focus is put on solitonic solutions in various field theories, which is the corner stone for these duality conjectures.
The introduction of supersymmetry is also essential for the understanding of duality by its natural way of handling BPSstates through the algebra.
In string theory, which is not only a supersymmetric theory but also includes gravity, these studies are put together through the discovery of various pbrane solutions to the background field equations.
The geometrical structure of these solutions is studied in some of the papers in this thesis.
In a generalization to the treatment of pbranes as solutions which break the local vacuum symmetry, the theory of almost product structures (APStheory) has arisen as the natural candidate to the study of the intricate geometry of these solutions.
The last two papers deal with this ansatz where it is also seen that APStheory is the most natural way of treating all kinds of splitting of manifolds including fibrations, YangMills theoryand KaluzaKlein theory.
.
.
.
by
U.V.S.Seshavatharam
Honorary Faculty, Institute of Scientific Research on Vedas(ISERVE)
Hyderabad35, AP, India
Email: seshavatharam.uvs@gmail.com
.
S. Lakshminarayana
Dept. of Nuclear Physics, Andhra University
Visakhapatnam03, AP, India
Email:lnsrirama@yahoo.com
.
. Abstract by
U.V.S.Seshavatharam
Honorary Faculty, Institute of Scientific Research on Vedas(ISERVE)
Hyderabad35, India
Email: seshavatharam.uvs@gmail.com
.
.
Introduction
Now as recently reported at the American Astronomical Society a study using the Very Large Array radio telescope in New Mexico and the French Plateau de Bure Interferometer has enabled astronomers to peer within a billion years of the Big Bang and found evidence that black holes were the first that leads galaxy growth. The implication is that the black holes started growing first. Initially astrophysicists attempted to explain the presence of these black holes by describing the evolution of galaxies as gathering mass until black holes format their center but further observation demanded that the galactic central black hole coevolved with the galactic bulge plasma dynamics and the galactic arms. This is a fundamental confirmation of N. Haramein’s theory described in his papers as a universe composed of “different scale black holes from universal size to atomic size”.
This clearly suggests that: galaxy constitutes a central black hole; the central black hole grows first; Star and galaxy growth goes parallel or later to the central black holes growth. The fundamental questions are: If “black hole” is the result of a collapsing star, how and why a stable galaxy contains a black hole at its center? Where does the central black hole comes from? How the galaxy center will grow like a black hole? How its event horizon exists with growing? If these are the observed and believed facts — not only for the author — this is a big problem for the whole science community to be understood.
Any how, the important point to be noted here is that “due to some unknown reason galactic central black holes are growing”! This is the key point for the beginning of the proposed expanding or growing cosmic black hole! See this latest published reference for the “black hole universe”. In our daily life generally it is observed that any animal or fruit or human beings (from birth to death) grows with closed boundaries (irregular shapes also can have a closed boundary). An apple grows like an apple. An elephant grows like an elephant. A plant grows like a plant. A human grows like a human. Through out their lifetime they won’t change their respective identities. These are observed facts. From these observed facts it can be suggested that “growth” or “expansion” can be possible with a closed boundary. By any reason if the closed boundary is opened it leads to “destruction” rather than “growth or expansion”. Thinking that nature loves symmetry, in a heuristic approach in this paper author assumes that“ through out its lifetime universe is a black hole”. Even though it is growing, at any time it is having an event horizon with a closed boundary and thus it retains her identity as a black hole forever. Note that universe is an independent body. It may have its own set of laws. At any time if universe maintains a closed boundary to have its size minimum at that time it must follow “strong gravity” at that time.
If universe is having no black hole structure any massive body(which is bound to the universe) may not show a black hole structure. That is black hole structure may be a subset of cosmic structure. This idea may be given a chance.
Rotation is a universal phenomenon. We know that black holes are having rotation and are not stationary. Recent observations indicates that black holes are spinning close to speed of light.
In this paper author made an attempt to give an outline of “expanding and light speed rotating black hole universe” that follows strong gravity from its birth to end of expansion.
Stephen Hawking in his famous book A Brief History of Time, in Chapter 3 which is entitled The Expanding Universe, says: “Friedmann made two very simple assumptions about the universe: that the universe looks identical in which ever direction we look, and that this would also be true if we were observing the universe from anywhere else. From these two ideas alone, Friedmann showed that we should not expect the universe to be static. In fact, in 1922, several years before Edwin Hubble’s discovery, Friedmann predicted exactly what Hubble found… We have no scientific evidence for, or against, the Friedmann’s second assumption. We believe it only on grounds of modesty: it would be most remarkable if the universe looked the same in every direction around us, but not around other points in the universe”.
From this statement it is very clear and can be suggested that, the possibility for a “closed universe” and a “flat universe” is 50–50 per cent and one cannot completely avoid the concept of a “closed universe”.
Clearly speaking, from Hubble’s observations and interpretations in 1929, the possibility of “galaxy receding” and “galaxy revolution” is 50–50 per cent and one cannot completely avoid the concept of “rotating universe”.
.
.
. Read the whole article . Advances in the field of cold fusion and the recent success of the nickel and hydrogen exothermal reaction, in which the energy release cannot be explained by a chemical process, need a deeper understanding of the nuclear reactions and, more particularly, the possibility for modification of the Coulomb barrier. The current theoretical understanding based on high temperature fusion does not offer an explanation for the cold fusion or LENR. The treatise “Basic Structures of Matter – Supergravitation Unified Theory”, based on an alternative concept of the physical vacuum, provides an explanation from a new point of view by using derived threedimensional structures of the atomic nuclei. For explanation of the nuclear energy, a hypothesis of a field microcurvature around the superdense nucleus is suggested. The new theoretical approach in the analysis of some successful cold fusion experiments resulted in practical considerations for modification of the Coulomb barrier. A possibility of another cold fusion reaction is predicted due to some similarity between the nuclear structures of Ni and Cr. by
Lino Daddi
Retired Earlier Professor
at Naval Academy Leghorn, Italy
Abstract
They are considered the roles of miniatoms and virtual neutrons in LENR reactions of hydrogen and deuterium absorbed in solids.
Has highlighted the role of virtual neutrons in restructuring of the nucleus, when the strong force provides the required energy for the virtual neutrons becomes real neutrons.
Some behaviors can be facilitated in hydrogen by alternation of the protonelectron system between the condition of miniatom and the condition of virtual neutron. This alternation could increase range and duration of the compressed system <p/e> to allow the proton to meet with a nucleus of the solid. . Read the whole article .
Introduction
These pages have been given to me from Prof. Sergio Focardi, when I asked him to help me with math to set up my theory.
These pages have been very important to me and I hope will be as much useful to our readers.
This way, Prof. Focardi continues to teach.
.
Andrea Rossi
.
P.S.
The notes are mine. Therefore may be wrong.
.
.
.
by This article is really about the neutrino. How can such a small particle with no electric charge and very little mass (if any) control the destiny of the world and all living things?
Listen, the radioactive nuclear atom will tell you. This article will explain how the neutrino works and what it does. What the neutrino really is, has not yet been discovered.
There are three types of neutrinos: the electron neutrino, the muon neutrino, and the tau neutrino. They will be mentioned in examples below.
There are three major classes of radioactivity processes:
. • Radioactive beta decay • Alpha particle decay
• Decay of proton particles
. These radioactivity processes will be described below and include: . • Radioactivity decay of the free neutron. • Radioactivity decay of the proton (if any)
• Pion particle decay
• Muon particle decay
. By these radioactivity processes, nuclear structure is unfolding. H. Becquerel discovered the ionizing effects of radioactivity radiation in 1899, and Rutherford showed that alpha particles were emitted as well as beta electrons.
. Read the whole article Download the ZIP file . .
by
U.V.S.Seshavatharam
Honorary faculty, ISERVE, Alakapuri, Hyderabad35, AP, India
QASpun division, LANCO Industries Ltd, Srikalahasti517641, AP, India
Email: seshavatharam.uvs@gmail.com
.
.
Abstract
Based on the big bang concepts in the expanding universe, ‘rate of decrease in CMBR temperature’ is a measure of the cosmic ‘rate of expansion’. Modern standard cosmology is based on two contradictory statements. They are – present CMBR temperature is isotropic and the present universe is accelerating. In particle physics also, till today laboratory evidence for the existence of ‘dark matter’ and ‘dark energy’ is very poor. Recent observations and thoughts supports the existence of the ‘cosmic axis of evil’. In this connection an attempt is made to study the universe with a closed and growing model of cosmology. If the primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities, it is also possible to assume that throughout its journey, the whole universe is a primordial (growing and rotating) cosmic black hole. Instead of the Planck scale, initial conditions can be represented with the Coulomb or Stoney scale. Obtained value of the present Hubble constant is close to 71 Km/sec/Mpc.
.
.
.
by
Tadej Bajda a.k.a.Tamal Krishna
das Krsko, Slovenia
.
.
Abstract
Description of a ﬁctional device, cylindrical in shape, for starting a low energy nuclear reaction. Using an environment of hydrogen and nickel charecteristics, similiar to one in an ECat. Imagining hydrogen molecul as a spring resonant system and simply using frequency and power of electricity as a catalyst.
.
.
by
Wladimir Guglinski
retired, author of the Quantum Ring Theory
.
.
Abstract
Dr. Wilfried Nörtershäuser of the Helmhotz Center for Heavy Ion Research at the University in Mainz says on the 2009 experiment which had detected a neutron halo in 4Be11 with distance 7fm from the cluster:
“By studing neutron halos, scientists hope to gain further understanding of the forces within the atomic nucleus that bind atoms together, taking into account the fact that the degree of displacement of halo neutrons from the atomic nuclear core is incompatible with the concepts of classical nuclear physics”[ 2 ]
In the case of 4Be11, the halo neutron and the nuclear core are separated by the distance of 7fm, and so such isotope represents the experimental proof that the cohesion of nucleons within the light isotopes cannot be promoted by the strong nuclear force.
Such experimental discovery published in 2009 had been predicted years ago, because according to the new nuclear model proposed in Quantum Ring Theory, published in 2006, the cohesion of the nucleons within the light nuclei is not caused by the strong nuclear force.
Here in this paper the new nuclear model is submitted to a scrutinity so that to verify whether from its structure it’s possible to explain the stability of the light nuclei and to reproduce the nuclear properties as nuclear spins, electric quadrupole moments, and magnetic moments. Nuclear magnetic moments are calculated from two different and independent methods. In the second, named “method of equilibrium between nucleons”, it’s presented the Lagrangian for nuclei with Z < 8. The results obtained from them agree each other, and are corroborated by nuclear spins and electric quadrupole moments suplied by nuclear tables.
In this Part One are presented calculations on magnetic moments for the isotopes of lithium, beryllium, and boron. In the next paper Part Two will be exhibited calculations for carbon, nitrogen, and oxygen. In the paper Part Three the author will exhibit calculations for electric quadrupole moments.
.
.
by
U.V.S. Seshavatharam
Honorary faculty, ISERVE
Alakapuri, Hyderabad35, AP, India
Email: seshavatharam.uvs@gmail.com
.
Prof. S. Lakshminarayana
Dept. of Nuclear Physics, Andhra University
Visakhapatnam03, AP, India
Email: lnsrirama@yahoo.com
With reference to the current physics concepts, implementing the gravitational constant in atomic and nuclear physics and studying its consequences is beyond the scope. 10 dimensional String theory is also not in a position to couple the nuclear scale and planck scale. Role of dark energy or dark matter is very insignificant in understanding the basic concepts of unification of fundamental interactions. Considering the atomic and nuclear physical constants till today cosmic acceleration is not yet verified.
. Project summary Within the expanding cosmic Hubble volume, Hubble length can be considered as the gravitational or electromagnetic interaction range. Product of ‘Hubble volume’ and ‘cosmic critical density’ can be called as the “Hubble mass”. The three proposed assumptions are: 1) within the Hubble volume, each and every point in free space is influenced by the Hubble mass, 2) ‘molar electron mass’ can be considered as the rest mass of a new heavy charged elementary particle and 3) atomic gravitational constant is Avogadro number times the classical gravitational constant. This is a new approach and may be given a chance in understanding the four fundamental cosmological interactions. Approach may be different but involvement and encouragement may bring this subject into main stream.
.


Copyright © 2019 Journal of Nuclear Physics  All Rights Reserved Powered by WordPress & Atahualpa 
Recent Comments